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Note 

Combining Renormalization Group 
and Multigrid Methods* 

1. INTRODUCTION 

At this conference it is hardly necessary to remind you that faster computers by 
themselves are unlikely to satisfy our needs for improved methods to simulate 
quantum field theory. Similarly in statistical physics and optimization theory even 
“simple” problems such as the Ising spin glass and the travelling salesman defy 
massive simulations. Brute force is not only unaesthetic, it is inadequate. On the 
other hand, it is necessary to consider new algorithms that are compatible with the 
architecture of the new generation of vector supercomputers and massively parallel 
arrays. The fastest and most efficient computing machinery will require codes with 
large numbers of independent concurrent computations. 

For the solution of PDEs, multigrid methods [l] yield dramatically increased 
speeds while at the same time being well suited to the architecture of parallel pro- 
cessors. Here we consider adapting such techniques to simulations in statistical 
mechanics and quantum field theory. Three crucial issues we present are (i) the role 
of the renormalization group, (ii) the exact preservation of detailed balance, and 
(iii) the exact preservation of gauge invariance. Tests of the resulting algorithms 
are being developed in simulations on the IBM 3090 with vector facility, the 
CDC Cyber 205, the ETA-lo, and the Connection Machine. 

Let us begin by reminding ourselves of why Monte Carlo algorithms (or any 
other local iterative algorithm, for that matter) are so time consuming. There are 
several causes, but the principle one is that we introduce a fictitious small length 
scale a (the lattice spacing) into problems when the interesting physics takes place 
at a much larger scale 5 (the “correlation” length). Generally, simulations take 
place in a space-time volume of sites (V> <“) via a local relaxation algorithm on 
these sites. Almost all local relaxation algorithms (for example, heat bath Monte 
Carlo or Gauss-Seidel matrix inversion) converge by sending information via a 
random walk throughout the lattice. The result is a relaxation time t which 
increases as t2, or more precisely like t’, where the dynamical critical exponent 
includes small non-gaussian corrections [2]. Consequently, useful results require a 
simulation time that increases as the product of volume effects and the relaxation 
time t, 

unit simulation time = const x V” x 5’. 

* Based on a talk given by R. C. Brower at the Conference on “Gauge Theory on the Lattice,” Seillac, 
France, Sept. 28-Oct. 2, 1987. 
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The power of volume factor L is 1 for bosonic theories and perhaps as large as 2 
for internal fermions in QCD [3]. Here we address the question of how to avoid 
this additional factor of 5’ which is referred to as critical slowing down in the 
literature [3] on dynamical critical phenomena. 

Obviously the general answer to the problem is to somehow avoid simulating the 
physics of the longer length scales O(r) as an accumulation of effects on the shor- 
test length scale O(a). Renormalization group and multigrid relaxation methods are 
two approaches that seek to use iterations on a logarithmic series of scales between 
the lattice length a and the physical length 5. Here we present some of our attempts 
to build algorithms by bringing these two approaches together. 

At this stage, we have identified the role of the renormalization group in multi- 
grid and given a rather general framework for its implementation which we refer to 
as the renormalization group multigrid (RGM) method. Eventually efficient algo- 
rithms require that we learn enough about the physics to identify the relevant 
collective coordinates on each scale and their appropriately renormalized dynamics 
at that scale. The black box of Monte Carlo simulations must be illuminated a bit 
by the physics. It is too early to know whether our approach will succeed. 

2.1D EXAMPLES OF RG MULTIGRID 

An easy way to see the connection between multigrid speedup and the renor- 
malization group is to look at several trivial one-dimensional examples. Our 
formulation of the RGM method is a generalization of these simple examples. 

2.1. Renormalized Multigrid Solver 

We wish to set up a multigrid PDE solver by starting with the Green’s or 
correlation function for a gaussian theory. This will allow us to easily extend our 
discussion to Monte Carlo for non-gaussian theories in Section 2.2. Imagine a set 
of coordinates 4, on a periodic lattice with N sites x = 0, 1,2, . . . . N- 1. Green’s 
function Q(x) for a fixed source at x = 0 is 

Q-Q) = const x ! W4Ao exp[ - (4, IX))], 

where 

(4, ~3) = ~,CZ*(4,+ I - dJ* + m2a2&1/2a. 

In the standard multigrid approach to a PDE, the update cycle has four 
elements: (1) smoothing the high frequency components on the original line lattice 
using the operator L; (2) introducing and initializing new collective coordinates 6 
on a coarser sublattice with an appropriate projection R: d(x) + &a), where f 
refers to a subset of sites x; (3) choosing a renormalized operator L on the coarser 
lattice to update the collective variables 4 -+ 6’; (4) interpolating these changes onto 
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the tine lattice variables by an injection transform Q: &(a), d(x) +4’(x). These 
steps are then applied on a fixed recursive schedule between the finest and the 
coarsest scales. 

Now we will show how an O(N) renormalization group approach solves this 
problem exactly for N= 2p sites in our 1D toy problem. We will refer to the levels 
as w = 0, 1, 2 ,..., p from top to bottom with lattice spacing 

a,, = a x 2”, 

respectively. The original lattice at the top is w = 0. Because of the gaussian form 
of the 1D problem, integrating out all the odd sites gives back the same problem 
on N/2 sites with renormalized wave function (2) and mass (m) parameters: 

zt+, = Zt/( 1 + m,a,/2) 

m,+, a,+, = m,a, J-4. 

The multigrid cycle consists of going to the coarsest lattice and solving the trivial 
one-site problem, and then iteratively back-substituting interpolated values from 
the nearest-neighbor form of the linear differential equation at each finer lattice. In 
N algebraic steps, you have the exact answer, which in multigrid language consists 
of the upward half of a single V-cycle. While this is a rather simple exercise, it is 
also instructive. We observe that (i) we have used the full renormalization group 
equations to connect the lattices, (ii) our speedup of O(N) is even better than an 
FFT algorithm of O(N log, N), and (iii) we can generalize this procedure to a 
non-gaussian Monte Carlo example-the 1D Ising model (see Section 2.2). 

2.2. Renormalized Multigrid Monte Carlo 

Let us illustrate this renormalization group multigrid (RGM) method for a 
Monte Carlo update by considering the 1D Ising system [4], 

Z=TrCexp(-BUl -~,~s,+~))l. 

Summing out the odd spins, we get a new dynamics with renormalized coupling, 

b ,,a + , = i log(coWB,)). 

The following half V-cycle works in O(N) steps to get an entirely uncorrelated new 
state. At the bottom w =p level choose s0 at random, then use the heat bath algo- 
rithm to get the spins coupled to it at w =p - 1, and so on up to the top w = 0. As 
we will show in Section 3 in a general argument, this algorithm satisfies detailed 
balance exactly. 

Again we note that an ideal multiscale algorithm takes the form of a renormaliza- 
tion group improved multigrid method. The essential question at this point is 
whether or not these simple 1D examples are in any way typical of the general 
problem of critical slowing down in higher dimensions. We have only partial 
answers to this question at present. 
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3. RGM METHODS IN HIGHER DIMENSIONS 

We are investigating two problems in higher dimensions to see how these 
renormalization group multigrid (RGM) methods might be used. The first is 
Monte Carlo for the Ising model and the second is lattice fermions in non-abelian 
gauge theories. We wish to report on the progress and the remaining difficulties. 

3.1. Metropolis Formulation 

We will begin with the formulation of a general renormalization group multigrid 
method for Monte Carlo updates. Just as in the review talk of M. Creutz [5], we 
have found that most of our individual algorithms can be cast in terms of a 
Metropolis algorithm. However, to implement detailed balance, it is useful to super- 
impose the variables of all levels into a “super Hamiltonian” or “super action.” For 
example, if we consider two levels (more will be added recursively), we define a 
“super Hamiltonian” Hsuper that depends on the variable for both levels 4 and 6 as 
well as the level selector variable u’, 

The renormalized Hamiltonian on the first level down (w = 1) HR, may depend on 
fields on the line level 4 as in the approach of Goodman and Sokal [6]. 

Now we consider a Monte Carlo algorithm that works in the combined space 
Q, = (&$, w) with the standard form for the Metropolis acceptance, 

A(@’ +- @) = MIN 1, A@ + @‘I exp( - ff,,,,(@‘)) 
d@’ + @) ev( -ff,,,,,(@)) 1 ’ 

All update steps are required to preserve the equilibrium distribution for the super 
Hamiltonian, Psuper = exp( - P~superYZsuper so that the averages over any function 
of the line variables will be equivalent to the averages in the distribution of the 
original problem with distribution function P,,,(4) = exp( - /?H(4))/Z. 

We construct a four-step multigrid cycle very similar to the PDE case, except 
that for steps 1 and 3 we use horizontal Metropolis steps that keep the level 
parameter w fixed and for steps 2 and 4 we use vertical Metropolis steps that 
change the level parameter w. The multigrid cycles must consist of a fixed schedule 
independent of the state of the system in order to preserve detailed balance. The 
schedule acts recursively on many levels, alternating updates on individual levels 
with updates that change levels. The updates on a fixed level are the diagonal 
elements in p(w’ t w) viewed as a matrix in w space and these updates can be 
restricted to only change coordinates 4 on that same level as in any standard single 
level Monte Carlo algorithm. 

To change levels, we use the off-diagonal elements, R, = p(w + 1 c w) and 
Qw = p(w + w + 1). It is now relatively easy to see that the 1D algorithm for the 
Ising model is a specific form of this RGM algorithm. In this case, R, sets all J to 

5Sl/SO/2-I5 
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be equal to the even subset of the s variables above it and Q, is the heat bath step 
itself for choosing the interpolated variables relative to the renormalized HE with 
/?,,. As in the standard heat bath this p function is chosen so as to exactly give you 
an acceptance of one. 

In 2D it is, in principle, possible to use the fully renormalized hamiltonian HR 
but it involves long-range couplings. Defining the fully renormalized HR as the 
decimation of half the spins (say all black spins in a red-black scheme), 

ev( -HR(3) = TrFC~S.yR exp( -Hb))l, 

and iterating this rule to many levels involves progressively longer range couplings, 
as in most renormalization group schemes. At present we are doing numerical 
simulations of algorithms that replace the fully renormalized HR by a Hamiltonian 
Z? which is truncated to nearest-neighbor couplings. The renormalized temperature 
B, and zero-point energy E, are allowed to be tuned parameters. The resulting 
acceptance depends on the change in the Hamiltonian 

A(w + 1 + w) = MIN[l, exp( -A,,.+, + Hf, ,)I 

A(~:+w+l)=MIN[l,exp(-Ht+,+fi,.+,)]. 

Tuning the parameters to maximize the acceptance is our renormalization group 
prescription. Numerical calculations show us that the critical temperature is an RG 
invariant to high accuracy even on small lattices. However, as we feared, we find 
that as the lattice becomes larger the mean acceptance rate falls exponentially in the 
volume of the lattice like exp( --E x V), where E is small but nonzero. When equi- 
librium is reached our simulations give us a value of E = 0.016 at optimal values for 
the renormalized parameters in the 2D Ising model. 

This volume effect is a major problem to which we have not yet found a satisfac- 
tory solution. With this volume term, we believe that the multigrid algorithm 
cannot reduce the exponent z for critical slowing down. It is not yet clear to us why 
on the basis of the operator product expansion [S], the volume term should not 
cancel to an order of some power of the inverse correlation length. Lacking such 
a theoretical picture, we cannot be sure whether a few more terms in the renor- 
malized Hamiltonian might not be able to eliminate the volume term altogether. 
We are investigating these questions. However, as in the volume effect seen in the 
exact versions of the pseudo-fermion algorithms, there may be a trade-off between 
this rejection rate and slower or more local changes of the coarser collective coor- 
dinates. This could be achieved by a direct coupling in the renormalized 
Hamiltonians back to the fine lattice similar to the terms in the Goodman and 
Sokal approach [6]. 

It may be helpful to contrast these suggestions of Goodman and Sokal with our 
formulation. They have suggested the use of collective coordinates for their multi- 
grid Monte Carlo (MGMC) method. For example, in the I$” theory, their MGMC 
update shifts all the coordinates in a 2” block of sites by a uniform amount (for all 



RGM METHOD 477 

x in block associated with 1,&x) -+ d(x) + d&i)). However, as they are careful to 
point out, the dynamics for the new 6 is not renormalized. They use exactly the 
same fine distribution with the update rule satisfying the conditional probability of 
the changed variable in the presence of all the other fixed variables. The result is 
a degenerate case of our Metropolis form with acceptance always equal to one. 

In contrast, we are recommending the use of renormalized actions on each level. 
Also as is typical in multigrid methods, we advocate that the new lattice sites be a 
subset of the old lattice. This is a different kind of blocking not usually used in real- 
space RG transformations. As our examples show, it is akin to naive decimation 
where the cells share some of their boundary sites with their neighboring cells. As 
we note below, this blocking scheme is particularly natural in applications to gauge 
theories. 

3.2, Swendsen and Wang Multilevel Method 

There is one method of doing multilevel updates on the Ising model that does 
maintain exact detailed balance, avoid any volume term in the acceptance rate, and 
reduces z dramatically to z z 0.3. The method also serves to underline the 
tremendous advantage to a deeper insight into the proper selection of collective 
coordinates. Swendsen and Wang [9] consider a super partition function, inspired 
by the work of Fortuin and Kasteleyn [lo], for the Ising model that has bond 
percolation variables (n). 

In analogy with our partition functions with the super Hamiltonian, summing over 
the “coarse” variables n gives back the original partition function. However, their 
algorithm based on this clever trick adaptively finds its new collective variable every 
cycle by percolating the bonds inside the current Ising clusters. The resultant 
clusters are then decoupled by the broken bonds and can be flipped with 50% 
likelihood. We are currently modifying this Swendsen and Wang algorithm to 
operate on a series of cluster sizes from the smallest at a single lattice spacing up 
to the largest at the Ising correlation length by varying the percolation strength. In 
collaboration with Swendsen, we are running this code for Ising and spin glass 
models on the Connection Machine. 

3.3. Gauge Invariance 

As was shown in our recent formulation of the multigrid algorithm for Wilson 
fermions in lattice QCD, gauge invariance can be incorporated nicely into multigrid 
schemes [ 111. 

In collaboration with Claudio Rebbi, we are investigating the proper renor- 
malization of the effective operator for the lattice Dirac equation on the coarser 
lattices to maximally accelerate the multigrid convergence. Numerical evidence will 
be reported elsewhere. In the present discussion of RGM Monte Carlo, we have 
found ways to apply the general framework discussed above to gauge theories. The 

581/80/2-15 l 
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constraint of gauge invariance is nicely satisfied by choosing the R and Q functions 
as probability distributions which connect the two lattices by Wilson loops that 
respect simultaneous gauge transformations on the line and coarse lattices (i.e., lat- 
tice sites that are shared between the lattices are gauge transformed together). If, in 
addition, the distributions are symmetric with respect to new and old variables, 
they disappear from the acceptance rate. This amounts to a rather intricate, but 
algorithmically simple, use of gauge invariance to accomplish the smoothing and 
interpolation steps 2 and 4 in changing levels which is analogous to the methods 
we introduced for the lattice fermions [lo, 111. 

In summary, the extension of RGM techniques to lattice gauge theory is not a 
technically formidable step. However, the physics of each new application can be 
quite different. As reported in the summary talk by Creutz [S], the present algo- 
rithmic alternatives used for lattice QCD are, for the most part, closely related and 
beautifully summarized in terms of various strategies for maximizing the Metropolis 
acceptance. We have formulated multigrid algorithms in an analogous fashion in a 
larger space that combines the original and the collective coordinates into a super- 
partition function. We have found over the last year that almost all of our attempts 
to find multilevel algorithms can be expressed in this way. However, the number of 
possibilities is enormous and the constraints of good acceptance severe. Nice solu- 
tions are not easy to find. Still between the cute but essentially trivial ID examples 
we have presented here and the sophisticated example of Swendsen and Wang lies 
a vast unexplored region. 
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